
b16 � A Forth Pro
essor in an FPGA

Bernd Paysan

July 9, 2006

Abstra
t

This arti
le presents ar
hite
ture and implementation of the b16 sta
k

pro
essor. This pro
essor is inspired by Chu
k Moore's newest

Forth pro
essors. The minimalisti
 design �ts into small FPGAs and

ASICs and is ideally suited for appli
ations that need both
ontrol

and
al
ulations. The synthesizible implementation uses Verilog.

Introdu
tion

Minimalisti
 CPUs
an be used in many designs. A state ma
hine

often is too
ompli
ated and too di�
ult to develop, when there are

more than a few states. A program with subroutines
an perform a

lot more
omplex tasks, and is easier to develop at the same time.

Also, ROM- and RAM blo
ks o

upy mu
h less pla
e on sili
on than

�random logi
�. That's also valid for FPGAs, where �blo
k RAM�

is�in
ontrast to logi
 elements�plenty.

The ar
hite
ture is inspired by the
18 from Chu
k Moore [1℄.

The exa
t instru
tion mix is di�erent. I traded 2* and 2/ against

division step and Forth-typi
al logi
 operations; these two instru
tions

an be implemented as short ma
ro. Also, this ar
hite
ture is byte-

addressed.

The original
on
ept (whi
h was synthesizible, and
ould exe
ute

a small sample program) was written in an afternoon. The
urrent

version is somewhat faster, and really runs on a Altera Flex10K30E

on a FPGA evaluation board from Hans E
kes. Size and speed of

the pro
essor
an be evaluated.

Flex10K30E About 600 LCs, the unit for logi

ells in Altera1. The

logi
 to interfa
e with the eval board needs another 100 LCs. The

slowest model runs at up to 25MHz.

A word about Verilog: Verilog is a C-like language, but tailored

for the purpose to simulate logi
, and to write synthesizible
ode.

Variables are bits and bit ve
tors, and assignments are typi
ally

non-blo
king, i.e. on assignments �rst all right sides are
om-

puted, and the left sides are modi�ed afterwards. Also, Verilog

has events, like
hanging of values or
lo
k edges, and blo
ks
an

wait on them.

1A logi

ell
an
ompute a logi
 fun
tion with four inputs and one output, or
a full-adder, and also
ontains a �ip-�op.

ALU

NOS

Stack Return−Stack

A

P

R

RAM/ROM

 Instruction Word Address Latch

TOS

Figure 1: Blo
k Diagram

1 Ar
hite
tural Overview

The
ore
omponents are

• An ALU

• A data sta
k with top and next of sta
k (T and N) as inputs

for the ALU

• A return sta
k, where the top of return sta
k (R)
an be

used as address

• An instru
tion pointer P

• An address register A

• An address lat
h addr, to address external memory

• An instru
tion lat
h I

Figure 1 shows a blo
k diagram.

1.1 Register

In addition to the user-visible lat
hes there are
ontrol lat
hes for

external RAM (rd and wr), sta
k pointers (sp and rp), a
arry

and the �ag in
by, by whi
h addr is in
remented.

1

b16 � A Forth Pro
essor in an FPGA Bernd Paysan 2 INSTRUCTION SET

Name Fun
tion

T Top of Sta
k

N Next of Sta
k

I Instru
tion Bundle

P Program Counter

A Address Register

addr Address Lat
h

state Pro
essor State

sp Sta
k Pointer

rp Return Sta
k Pointer

 Carry Flag

in
by In
rement Address by byte/word

〈register de
larations〉≡
reg rd;

reg [1:0℄ wr;

reg [sdep-1:0℄ sp;

reg [rdep-1:0℄ rp;

reg `L T, N, I, P, A, addr;

reg [2:0℄ state;

reg
;

reg in
by;

reg inta
k;

2 Instru
tion Set

There are 32 di�erent instru
tions. Sin
e several instru
tions �t

into a 16 bit word, we
all the bits to store the pa
ked instru
-

tions in an instru
tion word �slot�, and the instru
tion word itself

�bundle�. The arrangement here is 1,5,5,5, i.e. the �rst slot is

only one bit large (the more signi�
ant bits are �lled with 0), and

the others all 5 bits.

The operations in one instru
tion word are exe
uted one after the

other. Ea
h instru
tion takes one
y
le, memory operation (in-

luding instru
tion fet
h) need another
y
le. Whi
h instru
tion

is to be exe
uted is stored in the variable state.

The instru
tion set is divided into four groups: jumps, ALU,

memory, and sta
k. Table 1 shows an overview over the instru
-

tion set.

Jumps use the rest of the instru
tion word as target address (ex-

ept ret). The lower bits of the instru
tion pointer P are re-

pla
ed, there's nothing added. For instru
tions in the last slot,

no address remains, so they use T (TOS) as target.

〈instru
tion sele
tion〉≡
// instru
tion and bran
h target sele
tion

reg [4:0℄ inst;

reg `L jmp;

always �(state or I)

ase(state[1:0℄)

2'b00: inst <= { 4'b0000, I[15℄ };

2'b01: inst <= I[14:10℄;

2'b10: inst <= I[9:5℄;

2'b11: inst <= I[4:0℄;

end
ase //
asez(state)

always �(state or I or P or T)

ase(state[1:0℄)

2'b00: jmp <= { I[14:0℄, 1'b0 };

2'b01: jmp <= { P[15:11℄, I[9:0℄, 1'b0 };

2'b10: jmp <= { P[15:6℄, I[4:0℄, 1'b0 };

2'b11: jmp <= { T[15:1℄, 1'b0 };

end
ase //
asez(state)

The instru
tions themselves are exe
uted depending on inst:

〈instru
tions〉≡

asez(inst)

〈
ontrol �ow〉
〈ALU operations〉
〈load/store〉
〈sta
k operations〉

end
ase //
ase(inst)

2.1 Jumps

In detail, jumps are performed as follows: the target address is

stored in the address lat
h addr, whi
h addresses memory, not in

the P register. The register P will be set to the in
remented value

of addr, after the instru
tion fet
h
y
le. Apart from
all, jmp

and ret there are
onditional jumps, whi
h test for 0 and
arry.

The lowest bit of the return sta
k is used to save the
arry �ag

a
ross
alls. Conditional instru
tions don't
onsume the tested

value, whi
h is di�erent from Forth.

To make it easier to understand, I also de�ne the e�e
t of an

instru
tion in a pseudo language:

nop (�)

all (� r:P) P← jmp; c← 0

jmp (�) P← jmp

ret (r:a �) P← a ∧ $FFFE; c← a ∧ 1

jz (n � n) if(n = 0)P← jmp

jnz (n � n) if(n 6= 0)P← jmp

j
 (�) if(c) P← jmp

2

b16 � A Forth Pro
essor in an FPGA Bernd Paysan 2 INSTRUCTION SET

0 1 2 3 4 5 6 7 Comment

0 nop
all jmp ret jz jnz j
 jn

exe
 goto ret gz gnz g
 gn
 for slot 3

8 xor
om and or + +
 ∗+ /�

10 A!+ A�+ R�+ lit A
!+ A
�+ R
�+ lit

A! A� R� lit A
! A
� R
� lit
 for slot 1

18 nip drop over dup >r >a r> a

Table 1: Instru
tion Set

jn
 (�) if(c = 0)P← jmp

〈
ontrol �ow〉≡
5'b00001: begin

rp <= rpde
;

addr <= jmp;

 <= 1'b0;

if(state == 3'b011) `DROP;

end //
ase: 5'b00001

5'b00010: begin

addr <= jmp;

if(state == 3'b011) `DROP;

end

5'b00011: begin

{
, addr } <= { R[0℄, R[l-1:1℄, 1'b0 };

rp <= rpin
;

end //
ase: 5'b01111

5'b001??: begin

if((inst[1℄ ?
 : zero) ^ inst[0℄)

addr <= jmp;

if(state == 3'b011) `DROP;

end

2.2 ALU Operations

The ALU instru
tions use the ALU, whi
h
omputes a result res

and a
arry bit from T and N. The instru
tion
om is an ex
eption,

sin
e it only inverts T � that doesn't require an ALU.

The two instru
tions *+ (multipli
ation step) and /- (division

step) shift the result into the A register and
arry bit. *+ adds

N to T, when the
arry bit is set, and shifts the result one step

right.

/- also adds N to T, but also tests, if there is an over�ow, or if

the old
arry was set. The result is shifted one to the left.

Ordinary ALU instru
tions just write the result of the ALU into

T and
, and reload N.

xor (a b � r) r ← a⊕ b

om (a � r) r ← a⊕ $FFFF, c← 1

and (a b � r) r ← a ∧ b

or (a b � r) r ← a ∨ b

+ (a b � r) c, r ← a + b

+
 (a b � r) c, r ← a + b + c

∗+ (a b � a r) if(c) cn, r ← a + b else cn, r ← 0, b; r,A, c
cn, r,A

/� (a b � a r) cn, rn ← a + b + 1; if(c ∨ cn) r ← rn; c, r,A
r,A, c ∨ cn

〈ALU operations〉≡
5'b01001: {
, T } <= { 1'b1, ~T };

5'b01110: { T, A,
 } <=

{
 ? {
arry, res } : { 1'b0, T }, A };

5'b01111: {
, T, A } <=

{ (
 |
arry) ? res : T, A, (
 |
arry) };

5'b01???: begin

 <=
arry;

{ sp, T, N } <= { spin
, res, toN };

end //
ase: 5'b01???

2.3 Memory Instru
tions

Chu
k Moore doesn't use the TOS as address any more, but

has introdu
ed the A register. When you want to
opy memory

areas, you need a se
ond address register, that's what he uses

the top of return sta
k R for. Sin
e P has to be in
remented

after ea
h instru
tion fet
h (to point to the next instru
tion), the

address logi
 must have auto in
rement. This will also be used

for other a

esses.

Memory instru
tions whi
h use the �rst slot, and don't index over

P, don't in
rement the pointer; that's to realize read-modify-write

instru
tions like +!. Write a

ess is only possible via A, the two

other pointers
an only be used for read a

ess.

A!+ (n �) mem[A]← n; A← A + 2

A�+ (� n) n← mem[A]; A← A + 2

R�+ (� n) n← mem[R]; R← R + 2

lit (� n) n← mem[P]; P← P + 2

A
!+ (
 �) mem.b[A]← c; A← A + 1

A
�+ (�
) c← mem.b[A]; A← A + 1

R
�+ (�
) c← mem.b[R]; R← R + 1

lit
 (�
) c← mem.b[P]; P← P + 1

3

b16 � A Forth Pro
essor in an FPGA Bernd Paysan 2 INSTRUCTION SET

〈address handling〉≡
wire `L toaddr, in
addr, toR, R;

wire tos2r;

assign toaddr = inst[1℄ ? (inst[0℄ ? P : R) : A;

assign in
addr =

{ addr[l-1:1℄ + (in
by | addr[0℄),

~(in
by | addr[0℄) };

assign tos2r = inst == 5'b11100;

assign toR = state[2℄ ? in
addr :

(tos2r ? T : { P[15:1℄,
 });

Memory a

ess
an't just be done word wise, but also byte wise.

Therefore two write lines exist. For byte wise store the lower byte

of T is
opied to the higher one.

〈load/store〉≡
5'b10000: begin

addr <= toaddr;

wr <= 2'b11;

end

5'b10100: begin

addr <= toaddr;

wr <= { ~toaddr[0℄, toaddr[0℄ };

T <= { T[7:0℄, T[7:0℄ };

end

5'b10???: begin

addr <= toaddr;

rd <= 1'b1;

end

Memory a

esses need an extra
y
le. Here the result of the

memory a

ess is handled.

〈load-store〉≡
if(show) begin

〈debug〉
end

state <= nextstate;

〈pointer in
rement〉
rd <= 1'b0;

wr <= 2'b0;

if(|state[1:0℄) begin

〈store afterwork〉
end else begin

〈ifet
h〉
end

〈next〉

There's a spe
ial
ase for the instru
tion fet
h (the NEXT of the

ma
hine): when the
urrent instru
tion is a literal, we must use

in
addr instead of P.

〈next〉≡
if(nextstate == 3'b100) begin

{ addr, rd } <= { &inst[1:0℄ ?

in
addr : P, 1'b1 };

end // if (nextstate == 3'b100)

〈debug〉≡
$write("%b[%b℄ T=%b%x:%x[%x℄, ",

inst, state,
, T, N, sp);

$write("P=%x, I=%x, A=%x, R=%x[%x℄, res=%b%x\n",

P, I, A, R, rp,
arry, res);

After the a

ess is
ompleted, the result for a load has to be

pushed on the sta
k, or into the instru
tion register; for stores,

the TOS is to be dropped.

〈store afterwork〉≡
if(rd)

if(in
by)

{ sp, T, N } <= { spde
, data, T };

else

{ sp, T, N } <= { spde
, 8'h00,

addr[0℄ ? data[7:0℄ : data[l-1:8℄, T };

if(|wr)

`DROP;

in
by <= 1'b1;

Furthermore, the in
remented address may go ba
k to the pointer.

〈pointer in
rement〉≡

asez({ state[1:0℄, inst[1:0℄ })

4'b00??: P <= !intreq ? in
addr : addr;

4'b1?0?: A <= in
addr;

// 4'b1?10: R <= in
addr;

4'b??11: P <= in
addr;

end
ase //
asez({ state[1:0℄, inst[1:0℄ })

To short
ut a nop in the �rst instru
tion, there's some spe
ial

logi
. That's the se
ond part of NEXT.

〈ifet
h〉≡
inta
k <= intreq;

if(intreq)

I <= { 8'h81, intve
 }; //
all $200+intve
*2

else

I <= data;

if(!intreq & !data[15℄) state[1:0℄ <= 2'b01;

4

b16 � A Forth Pro
essor in an FPGA Bernd Paysan 3 EXAMPLES

Here, we also handle interrupts. Interrupts are a

epted at in-

stru
tion fet
h. Instead of in
rementing P, we load a
all to the

interrupt ve
tor (addresses from $200) into the instru
tion reg-

ister. The interrupt routine just has to save A (if needed), and

has to balan
e the sta
k on return. Sin
e three instru
tions
an

be exe
uted without interrupt, there's no interrupt disable �ag

internally, only an external interrupt unit might do that. The

last three instru
tions of su
h an interrupt routine then would be

a! >a ret.

2.4 Sta
k Instru
tions

Sta
k instru
tions
hange the sta
k pointer and move values into

and out of lat
hes. With the 8 used sta
k operations, one notes

that swap is missing. Instead, there's nip. The reason is a possi-

ble implementation option: it's possible to omit N, and fet
h this

value dire
tly out of the sta
k RAM. This
onsumes more time,

but saves spa
e.

Also, Chu
k Moore
laims, that you don't need swap � if you

don't have it, you help out with other sta
k operation, and there's

nothing to do, there's still >a >r a r>.

nip (a b � b)

drop (a �)

over (a b � a b a)

dup (a � a a)

>r (a � r:a)

>a (a �) A← a

r> (r:a � a)

a (� a) a← A

〈sta
k operations〉≡
5'b11000: { sp, N } <= { spin
, toN };

5'b11001: `DROP;

5'b11010: { sp, T, N } <= { spde
, N, T };

5'b11011: { sp, N } <= { spde
, T };

5'b11100: begin

rp <= rpde
; `DROP;

end //
ase: 5'b11100

5'b11101: begin

A <= T; `DROP;

end //
ase: 5'b11101

5'b11110: begin

{ sp, T, N } <= { spde
, R, T };

rp <= rpin
;

end //
ase: 5'b11110

5'b11111: { sp, T, N } <= { spde
, A, T };

If you don't want to live without swap, you
an repla
e the im-

plementation of nip in the �rst line by:

〈swap〉≡
5'b11000: { T, N } <= { N, T };

3 Examples

A few examples show, how to program this pro
essor. Multi-

pli
ation works through the A register. There's one extra step

ne
essary, sin
e ea
h bit �rst has to be shifted into the
arry

register. Sin
e
all
lears
arry, we don't have to do that here.

〈mul〉≡
: mul (u1 u2 � ud)

>A 0 #

*+ *+ *+ *+ *+ *+ *+ *+ *+

*+ *+ *+ *+ *+ *+ *+ *+

>r drop a r> ;

Division needs an extra step, too. Here, we need a real swap, but

sin
e there is none, we �rst use over and a

ept that we have to

use one extra sta
k item. Other than with mul we here need to

lear the
arry after
om. And �nally, we have to divide by two

and shift in the
arry.

〈div〉≡
: div (ud udiv � uqout umod)

om >r >r >a r> r> over 0 # +

/- /- /- /- /- /- /- /- /-

/- /- /- /- /- /- /- /-

nip nip a >r -
IF *+ r> ;

THEN 0 # + *+ $8000 # + r> ;

The next example is even more
ompli
ated, sin
e I emulate a

serial interfa
e. At 10MHz, ea
h bit takes 87
lo
k
y
les, to get

a 115200 baud fast serial line. We add a se
ond stop bit, to allow

the other side to resyn
hronize, when the next bit arrives.

〈serial line〉≡
: send-rest (
 �
') *+

: wait-bit

1 # $FFF9 # BEGIN over +
UNTIL drop drop ;

: send-bit (
 �
')

nop \ delay at start

: send-bit-fast (
 �
')

$FFFE # >a dup 1 # and

IF drop $0001 # a� or a!+ send-rest ;

THEN drop $FFFE # a� and a!+ send-rest ;

: emit (
 �) \ 8N1, 115200 baud

>r 06 # send-bit r>

send-bit-fast send-bit send-bit send-bit

send-bit send-bit send-bit send-bit

drop send-bit-fast send-bit drop ;

Like in ColorForth, ; is just an EXIT, and : is used as label. If

there's a
all before ;, this is
onverted to a jump. This saves

return sta
k entries, time, and
ode spa
e.

5

b16 � A Forth Pro
essor in an FPGA Bernd Paysan 4 THE REST OF THE IMPLEMENTATION

4 The Rest of the Implementation

First the implementation �le with
omment and modules.

〈b16.v〉≡
/*

* b16
ore: 16 bits,

* inspired by
18
ore from Chu
k Moore

*

〈inst-
omment〉
*/

`define L [l-1:0℄

`define DROP { sp, T, N } <= { spin
, N, toN }

`times
ale 1ns / 1ns

〈ALU 〉
〈Sta
k〉
〈
pu〉

〈inst-
omment〉≡
* Instru
tion set:

* 1, 5, 5, 5 bits

* 0 1 2 3 4 5 6 7

* 0: nop
all jmp ret jz jnz j
 jn

* /3 exe
 goto ret gz gnz g
 gn

* 8: xor
om and or + +
 *+ /-

* 10: A!+ A�+ R�+ lit A
!+ A
�+ R
�+ lit

* /1 A! A� R� lit A
! A
� R
� lit

* 18: nip drop over dup >r >a r> a

4.1 Top Level

The CPU
onsists of several parts, whi
h are all implemented in

the same Verilog module.

〈
pu〉≡
module
pu(
lk, reset, addr, rd, wr, data, T,

intreq, inta
k, intve
);

〈port de
larations〉
〈register de
larations〉
〈instru
tion sele
tion〉
〈ALU instantiation〉
〈address handling〉
〈sta
k pushs〉
〈sta
k instantiation〉
〈state
hanges〉

always �(posedge
lk or negedge reset)

〈register updates〉

endmodule //
pu

First, Verilog needs port de
larations, so that it
an now what's

input and output. The parameter are used to
on�gure other

word sizes and sta
k depths.

〈port de
larations〉≡
parameter show=0, l=16, sdep=3, rdep=3;

input
lk, reset;

output `L addr;

output rd;

output [1:0℄ wr;

input `L data;

output `L T;

input intreq;

output inta
k;

input [7:0℄ intve
; // interrupt jump ve
tor

The ALU is instantiated with the
on�gured width, and the ne
-

essary wires are de
lared

〈ALU instantiation〉≡
wire `L res, toN;

wire
arry, zero;

alu #(l) alu16(res,
arry, zero,

T, N,
, inst[2:0℄);

Sin
e the sta
ks work in parallel, we have to
al
ulated, when a

value is pushed onto the sta
k (thus only if something is stored

there).

〈sta
k pushs〉≡
reg dpush, rpush;

always �(
lk or state or inst or rd)

begin

dpush <= 1'b0;

rpush <= 1'b0;

if(state[2℄) begin

dpush <= |state[1:0℄ & rd;

rpush <= state[1℄ & (inst[1:0℄==2'b10);

end else

asez(inst)

5'b00001: rpush <= 1'b1;

5'b11100: rpush <= 1'b1;

5'b11?1?: dpush <= 1'b1;

end
ase //
ase(inst)

end

The sta
ks don't only
onsist of the two sta
k modules, but also

need an in
remented and de
remented sta
k pointer. The return

sta
k even allows to write the top of return sta
k even without

hanging the return sta
k depth.

6

b16 � A Forth Pro
essor in an FPGA Bernd Paysan 4 THE REST OF THE IMPLEMENTATION

〈sta
k instantiation〉≡
wire [sdep-1:0℄ spde
, spin
;

wire [rdep-1:0℄ rpde
, rpin
;

sta
k #(sdep,l) dsta
k(
lk, sp, spde
,

dpush, N, toN);

sta
k #(rdep,l) rsta
k(
lk, rp, rpde
,

rpush, toR, R);

assign spde
 = sp-{{(sdep-1){1'b0}}, 1'b1};

assign spin
 = sp+{{(sdep-1){1'b0}}, 1'b1};

assign rpde
 = rp+{(rdep){(~state[2℄ | tos2r)}};

assign rpin
 = rp+{{(rdep-1){1'b0}}, 1'b1};

The basi

ore is the fully syn
hronous register update. Ea
h

register needs a reset value, and depending on the state transition,

the
orresponding assignments have to be
oded. Most of that is

from above, only the instru
tion fet
h and the assignment of the

next value of in
by has to be done.

〈register updates〉≡
if(!reset) begin

〈resets〉
end else if(state[2℄) begin

〈load-store〉
end else begin // if (state[2℄)

if(show) begin

〈debug〉
end

if(nextstate == 3'b100)

{ addr, rd } <= { P, 1'b1 };

state <= nextstate;

in
by <= (inst[4:2℄ != 3'b101);

〈instru
tions〉
end // else: !if(reset)

As reset value, we initialize the CPU so that it is about to fet
h

the next instru
tion from address 0. The sta
ks are all empty,

the registers
ontain all zeros.

〈resets〉≡
state <= 3'b011;

in
by <= 1'b0;

P <= 16'h0000;

addr <= 16'h0000;

A <= 16'h0000;

T <= 16'h0000;

N <= 16'h0000;

I <= 16'h0000;

 <= 1'b0;

rd <= 1'b0;

wr <= 2'b00;

sp <= 0;

rp <= 0;

inta
k <= 0;

The transition to the next state (the NEXT within a bundle)

is done separately. That's ne
essary, sin
e the assignments of

the other variables are not just dependent on the
urrent state,

but partially also on the next state (e.g. when to fet
h the next

instru
tion word).

〈state
hanges〉≡
reg [2:0℄ nextstate;

always �(inst or state)

if(state[2℄) begin

〈rw-nextstate〉
end else begin

asez(inst)

〈inst-nextstate〉
end
ase //
asez(inst[0:2℄)

end // else: !if(state[2℄) end

〈rw-nextstate〉≡
nextstate <= state[1:0℄ + { 2'b0, |state[1:0℄ };

〈inst-nextstate〉≡
5'b00000: nextstate <= state[1:0℄ + 3'b001;

5'b00???: nextstate <= 3'b100;

5'b10???: nextstate <= { 1'b1, state[1:0℄ };

5'b?????: nextstate <= state[1:0℄ + 3'b001;

4.2 ALU

The ALU just
omputes the sum with possible
arry-ins, the log-

i
al operations, and a zero �ag. It would be possible to share

ommon resour
es (the XORs of the full adder
ould also
om-

pute the XOR operation, and the
arry propagation logi

ould

ompute OR and AND), but this optimization is left to the syn-

thesis tool.

〈ALU 〉≡
module alu(res,
arry, zero, T, N,
, inst);

〈ALU ports〉

wire `L sum, logi
;

wire
out;

assign {
out, sum } =

T + N + ((
 | andor) & selr);

assign logi
 = andor ?

(selr ? (T | N) : (T & N)) :

T ^ N;

assign {
arry, res } =

prop ? {
out, sum } : {
, logi
 };

assign zero = ~|T;

endmodule // alu

7

b16 � A Forth Pro
essor in an FPGA Bernd Paysan 5 DEVELOPMENT ENVIRONMENT

The ALU has ports T and N,
arry in, and the lowest 3 bits of

the instru
tion as input, a result,
arry out, and test for zero as

output.

〈ALU ports〉≡
parameter l=16;

input `L T, N;

input
;

input [2:0℄ inst;

output `L res;

output
arry, zero;

wire prop, andor, selr;

assign #1 { prop, andor, selr } = inst;

4.3 Sta
ks

The sta
ks are modeled as blo
k RAM in the FPGA. Therefore,

they should have only one port, sin
e these blo
k RAMs are avail-

able even in small FPGAs. In an ASIC, this sort of sta
k is im-

plemented with lat
hes. Here it's possible to separate read and

write port (also for FPGAs that support dual-ported RAM), and

save the multiplexer for spset.

〈Sta
k〉≡
module sta
k(
lk, sp, spde
, push, in, out);

parameter dep=3, l=16;

input
lk, push;

input [dep-1:0℄ sp, spde
;

input `L in;

output `L out;

reg `L sta
kmem[0:(1<<dep)-1℄;

wire [dep-1:0℄ spset;

`ifdef BEH_STACK

always �(
lk or push or spset or in)

if(push & ~
lk) sta
kmem[spset℄ <= #1 in;

assign spset = push ? spde
 : sp;

assign #1 out = sta
kmem[spset℄;

`else

sta
kram stram(in, push, spde
, sp, ~
lk, out);

`endif

endmodule // sta
k

4.4 Further Possible Optimizations

It would be possible to overlap memory a

esses and operations

on the sta
k, sin
e there are separate pointer registers. The un-

derstandability of the
ode would su�er, and the
riti
al path

would also be somewhat longer. With a guaranteed speed in-

rease of 25% (the
y
le to fet
h instru
tions would vanish), and

a maximum a

eleration by 100% (for memory-intensive appli
a-

tions), this
ould be worth the trouble � when there's enough

spa
e.

If there's la
k of spa
e, it is possible to implement most registers

as lat
hes. Only T needs to be a real �ip-�op. For FPGAs, this

is not an option, �ip-�ops are
heaper there.

4.5 S
aling Issues

Two approa
hes allow to adopt the b16 to own preferen
es: word

width and sta
k depth. The sta
k depth is easier. The
hosen

depth of 8 is su�
ient for the boot loader, but
ould
ause prob-

lems for more
omplex appli
ations. Simpler appli
ations however

should �t with a smaller sta
k.

The word width
an be adopted for the appli
ation, too. A ver-

sion redu
ed to 12 bit (and also with a modi�ed instru
tion set)

is used in a proje
t at my employer Mikron AG. This required

to
hange the de
oding of the instru
tions within the slot, and

adopt the logi
 to step over the �rst nop.

Furthermore, you
an repla
e individual instru
tions. For the 12

bit version, it was found that bit operations o

ur very frequently,

and byte a

esses are
ompletely irrelevant.

5 Development Environment

I
ould present a longer listing here, this time in Forth. However,

I'll just des
ribe the fun
tions. All three programs are put into

one �le, and allow intera
tive use of simulator and target.

5.1 Assembler

The assembler resembles a bit Chu
k Moore's ColorForth.

There are no
olors, just normal pun
tation, as
ommon in forth.

The assembler after all is
oded in Forth, and therefore expe
ts

Forth tokens.

8

b16 � A Forth Pro
essor in an FPGA Bernd Paysan REFERENCES

Labels are de�ned with : and |. The �rst one automati
ally
all

on referen
e, but
an be put on sta
k with '. The last one more

resemble an intera
tive Create. Labels are only resolved ba
k-

wards. Literals must be taken from the sta
k expli
itely with # or

#
. The assembler takes
are of the ordering within the slots. A

ret is normally
ompiled with a ;, pre
eeding
alls are
onverted

to a jmp. You
an de�ne ma
ros (ma
ro: . . . end-ma
ro).

Also the well-known
ontrol stru
tures from Forth
an be used

(must be used for forward bran
hes). IF be
omes a jz, jnz is

rea
hed with -IF.
IF and -
IF
orrespond jn
 and j
. Similar

pre�xes are available for WHILE and UNTIL.

5.2 Downloader

A pie
e of blo
k RAM in the FPGA is o

upied by a small pro-

gram, the boot loader. This small program drives the LEDs,

and waits for
ommands from the serial line (115.2KB-aud, 8N1,

no handshake). There are three
ommands, starting with ASCII

signs:

0 addr, len, <len∗data>: Programs memory from addr with len

data bytes

1 addr, len: Reads ba
k len bytes from memory starting at addr

2 addr: Exe
ute the word at addr

These three
ommands are su�
ient to program the b16 intera
-

tively. On the host side, a few instru
tions are su�
ient, too:

omp Compile to the end of line, and send the result to the

evaluation board

eval Compile to the end of line, send the result to the evalua-

tion board,
all the
ode, and set the RAM pointer of the

assembler ba
k to the original value

sim Same as eval, but exe
ute the result with the simulator

instead of using the evaluation board

he
k (addr u �) Reads a memory blo
k from the evaluation

board, and display it with dump

6 Outlook

More material is available from my home page [2℄. All sour
es

are available under GPL. Data for produ
ing a board is available,

too. Hans E
kes might make one for you, if you pay for it. And

if someone wants to use the b16
ommer
ially, talk to me.

Referen
es

[1℄
18 ColorForth Compiler, Chu
k Moore, 17th EuroForth

Conferen
e Pro
eedings, 2001

[2℄ b16 Pro
essor, Bernd Paysan, Internet Home

page, http://www.jwdt.
om/ paysan/b16.html

http://www.jwdt.
om/~paysan/b16.html

9

http://www.jwdt.com/~paysan/b16.html

	Architectural Overview
	Register

	Instruction Set
	Jumps
	ALU Operations
	Memory Instructions
	Stack Instructions

	Examples
	The Rest of the Implementation
	Top Level
	ALU
	Stacks
	Further Possible Optimizations
	Scaling Issues

	Development Environment
	Assembler
	Downloader

	Outlook

