b16 — A Forth Processor in an FPGA

BERND PAYSAN

July 9, 2006

Abstract

This article presents architecture and implementation of the b16 stack
processor. This processor is inspired by CHUCK MOORE’s newest
Forth processors. The minimalistic design fits into small FPGAs and
ASICs and is ideally suited for applications that need both control
and calculations. The synthesizible implementation uses Verilog.

Introduction

Minimalistic CPUs can be used in many designs. A state machine
often is too complicated and too difficult to develop, when there are
more than a few states. A program with subroutines can perform a
lott more complex tasks, and is easier to develop at the same time.
Also, ROM- and RAM blocks occupy much less place on silicon than
“random logic”. That’s also valid for FPGAs, where “block RAM”
is—in contrast to logic elements—plenty.

The architecture is inspired by the ¢18 from CHUCK MOORE [1].
The exact instruction mix is different. I traded 2% and 2/ against
division step and Forth-typical logic operations; these two instructions
can be implemented as short macro. Also, this architecture is byte-
addressed.

The original concept (which was synthesizible, and could execute
a small sample program) was written in an afternoon. The current
version is somewhat faster, and really runs on a Altera Flex10K30E
on a FPGA evaluation board from HANS ECKES. Size and speed of
the processor can be evaluated.

Flex10K30E About 600 LCs, the unit for logic cells in Altera'. The
logic to interface with the eval board needs another 100 LCs. The
slowest model runs at up to 25MHz.

A word about Verilog: Verilog is a C-like language, but tailored
for the purpose to simulate logic, and to write synthesizible code.
Variables are bits and bit vectors, and assignments are typically
non-blocking, i.e. on assignments first all right sides are com-
puted, and the left sides are modified afterwards. Also, Verilog
has events, like changing of values or clock edges, and blocks can
wait on them.

1A logic cell can compute a logic function with four inputs and one output, or
a full-adder, and also contains a flip-flop.

RAM/ROM

Instruction Word Address Latch

TOS A
NOS]—J T P
R
ALU
Stack Return-Stack

Figure 1: Block Diagram

1 Architectural Overview

The core components are

e An ALU

A data stack with top and next of stack (T and N) as inj
for the ALU

A return stack, where the top of return stack (R) car
used as address

An instruction pointer P

An address register A

An address latch addr, to address external memory

An instruction latch I

Figure 1 shows a block diagram.

1.1 Register

In addition to the user-visible latches there are control latche:
external RAM (rd and wr), stack pointers (sp and rp), a car
and the flag incby, by which addr is incremented.

b16 — A Forth Processor in an FPGA

BERND PAYSAN

2 INSTRUCTION |

’ Name ‘ Function

T Top of Stack
N Next of Stack
1 Instruction Bundle
P Program Counter
A Address Register
addr | Address Latch
state | Processor State
Sp Stack Pointer
p Return Stack Pointer
c Carry Flag
incby | Increment Address by byte/word

(register declarations)=
reg rd;
reg [1:0] wr;
reg [sdep-1:0] sp;
reg [rdep-1:0] rp;

reg ‘L T, N, I, P, A, addr;

reg [2:0] state;
reg c;

reg incby;

reg intack;

2 Instruction Set

There are 32 different instructions. Since several instructions fit
into a 16 bit word, we call the bits to store the packed instruc-
tions in an instruction word “slot”, and the instruction word itself
“bundle”. The arrangement here is 1,5,5,5, i.e. the first slot is
only one bit large (the more significant bits are filled with 0), and
the others all 5 bits.

The operations in one instruction word are executed one after the
other. Each instruction takes one cycle, memory operation (in-
cluding instruction fetch) need another cycle. Which instruction
is to be executed is stored in the variable state.

The instruction set is divided into four groups: jumps, ALU,
memory, and stack. Table 1 shows an overview over the instruc-
tion set.

Jumps use the rest of the instruction word as target address (ex-
cept ret). The lower bits of the instruction pointer P are re-
placed, there’s nothing added. For instructions in the last slot,
no address remains, so they use T (TOS) as target.

(instruction selection)=
// instruction and branch target selection
reg [4:0] inst;
reg ‘L jmp;

always @(state or I)
case(state[1:0])
2°b00: inst <= { 4°b0000, I[15] };

2°b01: inst <= I[14:10];
2°b10: inst <= I[9:5];
2°b11l: inst <= I[4:0];

endcase // casez(state)

always @(state or I or P or T)
case(state[1:0])
2°b00: jmp <= { I[14:0], 1°b0 };
2°b01: jmp <= { P[15:11], I[9:0], 1°b0 };
2°b10: jmp <= { P[15:6]1, I[4:0], 1°b0 };
2°b11: jmp <= { T[15:1], 1°b0 };
endcase // casez(state)

The instructions themselves are executed depending on inst

(instructions)=
casez(inst)
(control flow)
(ALU operations)
(load/store)
(stack operations)
endcase // case(inst)

2.1 Jumps

In detail, jumps are performed as follows: the target addre;
stored in the address latch addr, which addresses memory, nc
the P register. The register P will be set to the incremented v
of addr, after the instruction fetch cycle. Apart from call,
and ret there are conditional jumps, which test for 0 and c:
The lowest bit of the return stack is used to save the carry
across calls. Conditional instructions don’t consume the te
value, which is different from Forth.

To make it easier to understand, I also define the effect o
instruction in a pseudo language:

nop ()

call (— P)P «— jmp;c«—0

jmp (—) P« jmp

ret (r:a—)P —aASFFFE;c—aAl
jz (n—mn) if(n=0)P « jmp

n) if(n #0)P «— jmp

jo (—) if(0)P — jmp

jnz (n

b16 — A Forth Processor in an FPGA BERND PAYSAN 2 INSTRUCTION |

0 1 2 3 4 5 6 7 Comment

0 | nop | call jmp | ret jz jnz jc jnc
exec | goto | ret gz gnz gc gnc | for slot 3

8 | xor | com and or + +c x4 /-

10 | A+ | A@+ | R@+ | lit | Acl+
Al A@ R@ lit Ac!

Ac@Q+ | Re@Q+ | lite
Ac@ Rc@ | litc | for slot 1

18 | nip | drop | over | dup >r

>a r> a

Table 1: Instruction Set

jnc (—) if(c=0)P «— jmp

(control flow)=
5°b00001: begin
rp <= rpdec;
addr <= jmp;
c <= 1’b0;
if (state == 3°b011) ‘DROP;
end // case: 5°b00001
5°b00010: begin
addr <= jmp;
if (state == 3°b011) ‘DROP;
end
5’b00011: begin
{ c, addr } <= { R[0], R[1-1:1], 1°bO };
rp <= rpinc;
end // case: 5°b01111
5’b00177: begin
if((inst[1] ? ¢ : zero) ~ inst[0])
addr <= jmp;
if (state == 3°b011) ‘DROP;
end

2.2 ALU Operations

The ALU instructions use the ALU, which computes a result res
and a carry bit from T and N. The instruction com is an exception,
since it only inverts T — that doesn’t require an ALU.

The two instructions *+ (multiplication step) and /- (division
step) shift the result into the A register and carry bit. *+ adds
N to T, when the carry bit is set, and shifts the result one step
right.

/- also adds N to T, but also tests, if there is an overflow, or if
the old carry was set. The result is shifted one to the left.

Ordinary ALU instructions just write the result of the ALU into
T and ¢, and reload N.

xor (ab—r)r—a®b
com (a—r)r«— a®S$FFFF, ¢« 1
and (ab r)r<—aAb

or (ab—r)r«—aVvb

+ (ab—r)c,r—a+bd
4+c (ab—r1)c,r—a+b+c

x+ (ab ar)if(c)e,,r «— a+belsec,,r «— 0,b; r, A,
CanvA

/—(ab ar)cy,ry,—a+b+1;if(cVey)r «— r;cr, !
rAcVe,

(ALU operations)=
5°b01001: { ¢, T } <= { 1°b1, °T };
5°b01110: { T, A, c } <=
{c?{carry, res } : { 1°b0, T }, A };
5°b01111: { ¢, T, A } <=
{ (c | carry) ? res : T, A, (c | carry) };
5°b0177?7: begin
c <= carry,
{sp, T, N } <= { spinc, res, toN };
end // case: 5°b01777

2.3 Memory Instructions

CHUCK MOORE doesn’t use the TOS as address any more,
has introduced the A register. When you want to copy men
areas, you need a second address register, that’s what he
the top of return stack R for. Since P has to be incremen
after each instruction fetch (to point to the next instruction),
address logic must have auto increment. This will also be 1
for other accesses.

Memory instructions which use the first slot, and don’t index
P, don’t increment the pointer; that’s to realize read-modify-w
instructions like +!. Write access is only possible via A, the
other pointers can only be used for read access.

A4+ (n—) mem[A] —n; A —A+2
AQ+ (—n)n<—mem[Al; A —A+2
R@+ (n)n<—memR;R—R+2
lit (n)n<—mem[P;P—P+2
AclH+ (¢c—) mem.b[A] —c; A—A+1
Ac@+ (—c)c—mem.bA; A—A+1
Rc@+ (—c)c—membR;R—R+1
litc (—c)c—memdbP;P—P+1

b16 — A Forth Processor in an FPGA BERND PAYSAN 2 INSTRUCTION |

(address handling)=
wire ‘L toaddr, incaddr, toR, R;
wire tos2r;

assign toaddr = inst[1] ? (inst[0] ? P : R) : A;
assign incaddr =
{ addr[1-1:1] + (incby | addr[0]),
~(incby | addr([0]) };
assign tos2r = inst == 5°b11100;
assign toR = state[2] ? incaddr :
(tos2r 7 T : { P[15:1], ¢ });

Memory access can’t just be done word wise, but also byte wise.
Therefore two write lines exist. For byte wise store the lower byte
of T is copied to the higher one.

(load/store)=
5°b10000: begin
addr <= toaddr;
wr <= 2’bl1l;
end
5°b10100: begin
addr <= toaddr;
wr <= { “toaddr[0], toaddr[0] };
T <= { T[7:0], T[7:0] };
end
5°b10777: begin
addr <= toaddr;
rd <= 1°b1;
end

Memory accesses need an extra cycle. Here the result of the
memory access is handled.

(load-store)=

if (show) begin
(debug)

end

state <= nextstate;

(pointer increment)

rd <= 1°b0;

wr <= 2°b0;

if(|state[1:0]) begin
(store afterwork)

end else begin
(ifetch)

end

(next)

There’s a special case for the instruction fetch (the NEXT of
machine): when the current instruction is a literal, we must
incaddr instead of P.

(next)=
if (nextstate == 3’b100) begin
{ addr, rd } <= { &inst[1:0] ?
incaddr : P, 1°bl };
end // if (nextstate == 3°b100)

(debug)=
$urite ("%b[%b] T=Ybix:%x[%x1, ",
inst, state, c, T, N, sp);
$write ("P=%x, I=%x, A=%x, R=¥x[%x], res=¥%bl%x\n",
P, I, A, R, rp, carry, res);

After the access is completed, the result for a load has tc
pushed on the stack, or into the instruction register; for stc
the TOS is to be dropped.

(store afterwork)=
if (rd)
if (incby)
{sp, T, N } <= { spdec, data, T };
else
{ sp, T, N } <= { spdec, 8’h00,
addr[0] ? data[7:0] : datal[1-1:8], T };
if (lwr)
‘DROP;
incby <= 1’bl;

Furthermore, the incremented address may go back to the poir

(pointer increment)=
casez({ state[1:0], inst[1:0] })
4°b007?7: P <= l!intreq ? incaddr : addr;
4°b1?07: A <= incaddr;
// 4°b1710: R <= incaddr;
4°pb7?11: P <= incaddr;
endcase // casez({ state[1:0], inst[1:0] })

To shortcut a nop in the first instruction, there’s some spe
logic. That’s the second part of NEXT.

(ifetch)=
intack <= intreq;
if (intreq)
I <= { 8’h81, intvec }; // call $200+intvec*2
else
I <= data;
if ('intreq & !data[15]) state[1:0] <= 2’b01;

b16 — A Forth Processor in an FPGA

BERND PAYSAN

3 EXAMP

Here, we also handle interrupts. Interrupts are accepted at in-
struction fetch. Instead of incrementing P, we load a call to the
interrupt vector (addresses from $200) into the instruction reg-
ister. The interrupt routine just has to save A (if needed), and
has to balance the stack on return. Since three instructions can
be executed without interrupt, there’s no interrupt disable flag
internally, only an external interrupt unit might do that. The
last three instructions of such an interrupt routine then would be
a! >a ret.

2.4 Stack Instructions

Stack instructions change the stack pointer and move values into
and out of latches. With the 8 used stack operations, one notes
that swap is missing. Instead, there’s nip. The reason is a possi-
ble implementation option: it’s possible to omit N, and fetch this
value directly out of the stack RAM. This consumes more time,
but saves space.

Also, CHUCK MOORE claims, that you don’t need swap — if you
don’t have it, you help out with other stack operation, and there’s
nothing to do, there’s still >a >r a r>.

nip (ab—>b)
drop (a)
over (ab—aba)
dup (a aa)
>r (a—ma)

>a (a—)A«—a
r> (ra a)
a(—a)a—A

(stack operations)=
5°b11000: { sp, N } <= { spinc, toN };
5°b11001: ‘DROP;
5°b11010: { sp, T, N } <= { spdec, N, T };
5°b11011: { sp, N } <= { spdec, T };
5°b11100: begin
rp <= rpdec; ‘DROP;
end // case: 5’°b11100
5’b11101: begin
A <= T; ‘DROP;
end // case: 5’°b11101
5’b11110: begin
{sp, T, N } <= { spdec, R, T };
rp <= rpinc;
end // case: 5’°b11110
5°b11111: { sp, T, N } <= { spdec, A, T };

If you don’t want to live without swap, you can replace the im-
plementation of nip in the first line by:

(swap)=
5°b11000: { T, N } <= { N, T };

3 Examples

A few examples show, how to program this processor. M
plication works through the A register. There’s one extra
necessary, since each bit first has to be shifted into the c.
register. Since call clears carry, we don’t have to do that he

(mul)=
:mul (ul u2 - ud)
>A 0 #
K+ okt okt K+ okt okt K+ ok x4
X+ K+ okt K+ okt okt K+ okt
>r drop a r> ;

Division needs an extra step, too. Here, we need a real swap,
since there is none, we first use over and accept that we hav
use one extra stack item. Other than with mul we here nee
clear the carry after com. And finally, we have to divide by
and shift in the carry.

(div)=
: div (ud udiv - uqout umod)
com >r >r >a r> r> over 0 # +
/= /=/- /= /== /- /- /-

/= /=1- I /- /- -
nip nip a >r -cIF *+ r> ;
THEN O # + *+ $8000 # + r> ;

The next example is even more complicated, since T emula
serial interface. At 10MHz, each bit takes 87 clock cycles, to
a 115200 baud fast serial line. We add a second stop bit, to a
the other side to resynchronize, when the next bit arrives.

(serial line)=
: send-rest (¢ - ¢’) *+
! wait-bit
1 # $FFF9 # BEGIN over + CcUNTIL drop drop ;
send-bit (¢c - ¢’)
nop \ delay at start
send-bit-fast (¢ - ¢’)
$FFFE # >a dup 1 # and
IF drop $0001 # a@ or a!+ send-rest ;
THEN drop $FFFE # a@ and a!+ send-rest ;
: emit (¢ -) \ 8N1, 115200 baud
>r 06 # send-bit r>
send-bit-fast send-bit send-bit send-bit
send-bit send-bit send-bit send-bit
drop send-bit-fast send-bit drop ;

Like in ColorForth, ; is just an EXIT, and : is used as labe
there’s a call before ;, this is converted to a jump. This s
return stack entries, time, and code space.

b16 — A Forth Processor in an FPGA BERND PAYSAN 4 THE REST OF THE IMPLEMENTAT

4 The Rest of the Implementation

First the implementation file with comment and modules.

(b16.v)=
/*
* bl6 core: 16 bits,
* inspired by c18 core from Chuck Moore
*

(inst-comment)

*/

‘define L [1-1:0]
‘define DROP { sp, T, N } <= { spinc, N, toN }
‘timescale 1ns / 1ns

(ALU)
(Stack)
{cpu)

(inst-comment)=
* Instruction set:

10: A!+ A@+ R@+ 1it Ac!+ Ac@+ Rc@+ litc
/1 A! A@ R@ 1it Ac! Ac@ Rc@ litc
18: nip drop over dup >r >a r> a

* 1, 5, 5, 5 bits

* 0 1 2 3 4 5 6 7

* 0: nop call jmp ret jz jnz jc jnc
x /3 exec goto ret gz gnz gc gnc
* 8: xor com and or @+ tc okt /-
*

*

*

4.1 Top Level

The CPU consists of several parts, which are all implemented in
the same Verilog module.

(cpu)=
module cpu(clk, reset, addr, rd, wr, data, T,
intreq, intack, intvec);
(port declarations)
(register declarations)
(instruction selection)
(ALU instantiation)
(address handling)
(stack pushs)
(stack instantiation)
(state changes)
always @(posedge clk or negedge reset)
(register updates)

endmodule // cpu

First, Verilog needs port declarations, so that it can now wk
input and output. The parameter are used to configure o
word sizes and stack depths.

(port declarations)=
parameter show=0, 1=16, sdep=3, rdep=3;
input clk, reset;
output ‘L addr;
output rd;
output [1:0] wr;
input ‘L data;
output ‘L T;
input intreq;
output intack;
input [7:0] intvec; // interrupt jump vector

The ALU is instantiated with the configured width, and the
essary wires are declared

(ALU instantiation)=
wire ‘L res, toN;
wire carry, zero;

alu #(1) alul6(res, carry, zero,
T, N, ¢, inst[2:0]);

Since the stacks work in parallel, we have to calculated, whe
value is pushed onto the stack (thus only if something is st
there).

(stack pushs)=
reg dpush, rpush;

always @(clk or state or inst or rd)
begin
dpush <= 1°b0;
rpush <= 1°b0;
if (state[2]) begin
dpush <= |state[1:0] & rd;
rpush <= state[1] & (inst[1:0]==2’b10);
end else
casez(inst)
5°b00001: rpush <= 1°’bil;
5°b11100: rpush <= 1°’bil;
5°b11717: dpush <= 1°bil;
endcase // case(inst)
end

The stacks don’t only consist of the two stack modules, but
need an incremented and decremented stack pointer. The ref
stack even allows to write the top of return stack even witl
changing the return stack depth.

b16 — A Forth Processor in an FPGA

BERND PAYSAN 4 THE REST OF THE IMPLEMENTAT

(stack instantiation)=
wire [sdep-1:0] spdec, spinc;
wire [rdep-1:0] rpdec, rpinc;

stack #(sdep,l) dstack(clk, sp, spdec,
dpush, N, tolN);
stack #(rdep,1l) rstack(clk, rp, rpdec,
rpush, toR, R);

assign spdec = sp-{{(sdep-1){1°b0}}, 1’bi1};
assign spinc = sp+{{(sdep-1){1°b0}}, 1’bl};
assign rpdec = rp+{(rdep){("state[2] | tos2r)}};
assign rpinc = rp+{{(rdep-1){1°b0}}, 1°b1l};

The basic core is the fully synchronous register update. Each
register needs a reset value, and depending on the state transition,
the corresponding assignments have to be coded. Most of that is
from above, only the instruction fetch and the assignment of the

next value of incby has to be done.

(register updates)=
if(!'reset) begin
(resets)
end else if(state[2]) begin
(load-store)
end else begin // if (state[2])
if (show) begin
(debug)
end
if (nextstate == 3’°b100)
{ addr, rd } <= { P, 1°b1 };
state <= nextstate;
incby <= (inst[4:2] != 3°b101);
(instructions)
end // else: !'if(reset)

As reset value, we initialize the CPU so that it is about to fetch

the next instruction from address 0. The stacks
the registers contain all zeros.

(resets)=
state <= 3’b011;
incby <= 1°b0;
P <= 16°h0000;
addr <= 16’h0000;

A <= 16°h0000;
T <= 16°h0000;
N <= 16°h0000;
I <= 16’°h0000;
c <= 1°b0;

rd <= 1°b0;

wr <= 2’b00;
sp <= 0;

rp <= 0;

intack <= 0;

are all empty,

The transition to the next state (the NEXT within a bun
is done separately. That’s necessary, since the assignment
the other variables are not just dependent on the current st
but partially also on the next state (e.g. when to fetch the 1
instruction word).

(state changes)=
reg [2:0] nextstate;

always @(inst or state)

if (state[2]) begin

(rw-nextstate)
end else begin

casez(inst)

(inst-nextstate)

endcase // casez(inst[0:2])

end // else: !'if(state[2]) end

(rw-neztstate)=
nextstate <= state[1:0] + { 2°b0, |state[1:0] };

(inst-nextstate)=
5'b00000: nextstate <= state[1:0] + 3’b001;
5’b007?7: nextstate <= 3’b100;
5°b107??: nextstate <= { 1’bl, statel[1:0] };
5°b?7777: nextstate <= state[1:0] + 3’b001;

4.2 ALU

The ALU just computes the sum with possible carry-ins, the
ical operations, and a zero flag. It would be possible to sl
common resources (the XORs of the full adder could also ¢
pute the XOR operation, and the carry propagation logic c
compute OR and AND), but this optimization is left to the |
thesis tool.

(ALU)=
module alu(res, carry, zero, T, N, c, inst);
(ALU ports)
wire ‘L sum, logic;
wire cout;

assign { cout, sum } =
T+ N + ((c | andor) & selr);
assign logic = andor ?
(selr ? (T | N) : (T & N))
T ~ N;
assign { carry, res } =
prop ? { cout, sum } : { c, logic };
assign zero = ~|T;

endmodule // alu

b16 — A Forth Processor in an FPGA

BERND PAYSAN

5 DEVELOPMENT ENVIRONMI

The ALU has ports T and N, carry in, and the lowest 3 bits of
the instruction as input, a result, carry out, and test for zero as
output.

(ALU ports)=
parameter 1=16;
input ‘L T, N;
input c;
input [2:0] inst;
output ‘L res;
output carry, zero;

wire prop, andor, selr;

assign #1 { prop, andor, selr } = inst;

4.3 Stacks

The stacks are modeled as block RAM in the FPGA. Therefore,
they should have only one port, since these block RAMs are avail-
able even in small FPGAs. In an ASIC, this sort of stack is im-
plemented with latches. Here it’s possible to separate read and
write port (also for FPGAs that support dual-ported RAM), and
save the multiplexer for spset.

(Stack)=
module stack(clk, sp, spdec, push, in, out);

parameter dep=3, 1=16;
input clk, push;
input [dep-1:0] sp, spdec;
input ‘L in;
output ‘L out;
reg ‘L stackmem[0:(1<<dep)-1];
wire [dep-1:0] spset;

‘ifdef BEH_STACK
always @(clk or push or spset or in)
if (push & ~“clk) stackmem[spset] <= #1 in;

assign spset = push 7 spdec : sp;

assign #1 out = stackmem[spset];
‘else

stackram stram(in, push, spdec, sp, ~clk, out);
‘endif
endmodule // stack

4.4 Further Possible Optimizations

It would be possible to overlap memory accesses and operat,
on the stack, since there are separate pointer registers. The
derstandability of the code would suffer, and the critical |
would also be somewhat longer. With a guaranteed speed
crease of 25% (the cycle to fetch instructions would vanish),
a maximum acceleration by 100% (for memory-intensive app!
tions), this could be worth the trouble — when there’s enc
space.

If there’s lack of space, it is possible to implement most regis
as latches. Only T needs to be a real flip-flop. For FPGAs,
is not an option, flip-flops are cheaper there.

4.5 Scaling Issues

Two approaches allow to adopt the b16 to own preferences: v
width and stack depth. The stack depth is easier. The che
depth of 8 is sufficient for the boot loader, but could cause p
lems for more complex applications. Simpler applications how
should fit with a smaller stack.

The word width can be adopted for the application, too. A
sion reduced to 12 bit (and also with a modified instruction
is used in a project at my employer Mikron AG. This requ
to change the decoding of the instructions within the slot,
adopt the logic to step over the first nop.

Furthermore, you can replace individual instructions. For th
bit version, it was found that bit operations occur very freques
and byte accesses are completely irrelevant.

5 Development Environment

I could present a longer listing here, this time in Forth. Howe
I’ll just describe the functions. All three programs are put
one file, and allow interactive use of simulator and target.

5.1 Assembler

The assembler resembles a bit CHUCK MOORE'’s Colorkc
There are no colors, just normal punctation, as common in fc
The assembler after all is coded in Forth, and therefore exp
Forth tokens.

b16 — A Forth Processor in an FPGA

BERND PAYSAN

REFEREN

Labels are defined with : and |. The first one automatically call
on reference, but can be put on stack with ’. The last one more
resemble an interactive Create. Labels are only resolved back-
wards. Literals must be taken from the stack explicitely with # or
#c. The assembler takes care of the ordering within the slots. A
ret is normally compiled with a ;, preceeding calls are converted
to a jmp. You can define macros (macro: ... end-macro).

Also the well-known control structures from Forth can be used
(must be used for forward branches). IF becomes a jz, jnz is
reached with -IF. cIF and -cIF correspond jnc and jc. Similar
prefixes are available for WHILE and UNTIL.

5.2 Downloader

A piece of block RAM in the FPGA is occupied by a small
gram, the boot loader. This small program drives the LE
and waits for commands from the serial line (115.2KB-aud, &
no handshake). There are three commands, starting with Af
signs:

0 addr, len, <lenxdata>: Programs memory from addr with
data bytes
1 addr, len: Reads back len bytes from memory starting at

2 addr: Execute the word at addr

These three commands are sufficient to program the b16 inte
tively. On the host side, a few instructions are sufficient, toc

comp Compile to the end of line, and send the result to
evaluation board

eval Compile to the end of line, send the result to the eva
tion board, call the code, and set the RAM pointer of
assembler back to the original value

sim Same as eval, but execute the result with the simul
instead of using the evaluation board

check (addru) Reads a memory block from the evalua
board, and display it with dump

6 Outlook

More material is available from my home page [2]. All sou
are available under GPL. Data for producing a board is availe
too. HANS ECKES might make one for you, if you pay for it. .
if someone wants to use the b16 commercially, talk to me.

References

[1] ¢18 ColorForth Compiler, CHUCK MOORE, 17" EuroF
Conference Proceedings, 2001

Internet H
paysan/b16.1

[2] b16 Processor, ~ BERND PAYSAN,
page, http://www.jwdt.com/
http://www.jwdt.com/ paysan/b16.html

http://www.jwdt.com/~paysan/b16.html

	Architectural Overview
	Register

	Instruction Set
	Jumps
	ALU Operations
	Memory Instructions
	Stack Instructions

	Examples
	The Rest of the Implementation
	Top Level
	ALU
	Stacks
	Further Possible Optimizations
	Scaling Issues

	Development Environment
	Assembler
	Downloader

	Outlook

